INDIAN STATISTICAL INSTITUTE

Probability Theory II: B. Math (Hons.) I Semester II, Academic Year 2016-17 Mid-term Exam

Date: Feb 21, 2017 Total Marks: 40 Duration: 10:00 am - 12:30 pm

- Please write your roll number on top of your answer paper.
- Show all your works and write explanations when needed. If you are using a result stated and/or proved in class, please quote it correctly.
- You are NOT allowed to use class notes, books, homework solutions, list of theorems, formulas etc.
- 1. A continuous random vector (X,Y) has a joint probability density function given by

$$f_{X,Y}(x,y) = \begin{cases} c & \text{if } y > 0, |x| + y < 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) (2 marks) Find c.
- (b) (4+4=8 marks) Compute marginal probability density functions of X and Y.
- 2. (10 marks) Suppose $X_1 \sim N(0,1)$, $X_2 \sim N(0,1)$ and X_1 , X_2 are independent. Find a probability density function of $Y_1 = X_1 + X_2$.

[Hint: Use the random variable $Y_2 = X_1 - X_2$.]

- 3. Suppose $X_1 \sim Gamma(\alpha_1, \lambda), X_2 \sim Gamma(\alpha_2, \lambda)$ and X_1, X_2 are independent.
 - (a) (10 marks) Find a joint probability density function of $Y_1 = X_1 + X_2$ and $Y_2 = X_1/(X_1 + X_2)$.
 - (b) (2 marks) Are Y_1 and Y_2 independent? Please justify your answer.
 - (c) (2 marks) Can you identify the marginal distributions of Y_1 and Y_2 ?
 - (d) (5+1 = 6 marks) Let $Z_1, Z_2, ..., Z_{200}$ be independent and identically distributed random variables with $Z_1 \sim N(0,1)$. Find a joint probability density function of $\sum_{i=1}^{200} Z_i^2$ and $\frac{\sum_{i=1}^{80} Z_i^2}{\sum_{i=1}^{200} Z_i^2}$. Are they independent?